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Abstract

In this paper, we present a fast multipole-accelerated integral equation method for solving the modified Helmholtz
equation Duð~xÞ � b2uð~xÞ ¼ f ð~xÞ in two dimensions. The method is direct, and unlike classical FFT based fast solvers, it
allows for adaptive mesh refinement but with comparable amount of work per grid point. When the computational
domain is rectangular, Dirichlet, Neumann, periodic, and free-space boundary conditions can be imposed analytically
without the need to solve a system of linear equations. Several important features of the algorithm are discussed, includ-
ing the use of precomputed tables, diagonal translation operators, and lattice sums to impose periodic boundary con-
ditions. Numerical experiments show that, for a wide range of the parameter b, the algorithm is stable and high-order
accurate.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A variety of problems in scientific computing require the efficient solution of the partial differential
equation
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This equation is sometimes referred to as the modified Helmholtz equation or the Yukawa equation. It
appears, for example, in implicit marching schemes for the heat equation, in Debye–Huckel theory, and
in the linearization of the Poisson–Boltzmann equation [37,39,46]. The underlying free-space Green�s func-
tion is usually referred to as the Yukawa potential in nuclear physics. In physics, chemistry, and biology,
when Coulomb forces are damped by screening effects, this Green�s function is also known as the screened
Coulomb potential. In Debye–Huckel theory, the constant b represents the inverse of the electron Debye
length which indicates the length scale over which an individual charged particle exerts a notable effect.

Traditional fast solvers, when based on the fast Fourier transform (FFT) [6,7], only allow for uniform
grids and simple geometry. Iterative methods such as the multigrid method and domain decomposition
techniques handle unstructured grids and complex geometry [5,9,10,14,36,40,41]. However, despite signif-
icant progress, the available solvers tend to compare unfavorably with the FFT based direct solvers in terms
of work per grid point.

In this paper, we introduce a new fast direct solver for the modified Helmholtz equation in two dimen-
sions. The algorithm is based on an integral equation formulation and is accelerated using the new version
of fast multipole method [11,26,28]. The solver allows for adaptive mesh refinement and is comparable in
speed with FFT based methods. For the sake of simplicity, we restrict our attention here to the unit square,
but allow different kinds of boundary conditions. For this simple geometry, using results from classical
potential theory, the method is explicit. That is, no linear system is solved for either volume or boundary
unknowns. For general complex geometry, an integral equation needs to be solved for unknowns restricted
to the boundary alone.

One feature of the present paper is a generalization of the technique first introduced in [11,26,28] to
accelerate the fast multipole method (FMM) for the Laplace and Helmholtz equations. It is based on
the use of exponential expansions rather than classical multipole expansions to represent far-field interac-
tions. Due perhaps to the complexity of the new version of the FMM, we are not aware of any implemen-
tation for computing volume integrals with the Yukawa potential in either two or three dimensions,
although particle interactions in three dimensions were discussed in [25]. Our new solver, described below,
shows great potential to compete with the FFT in work per grid point, while still allowing for adaptive
mesh refinement and accuracy control.

It is worth mentioning that in marching schemes for the time dependent heat and Navier–Stokes equa-
tions, the modified Helmholtz equation usually appears in the form uð~xÞ � �Duð~xÞ ¼ ~f ð~xÞ, where �� 1.
Rescaling this equation to the standard form, we have Duð~xÞ � b2uð~xÞ ¼ �b2~f ð~xÞ with b � 1.

The paper is organized as follows: In Section 2, we outline the integral equation formulation and the fast
multipole method. The current method shares many features with the recently developed fast solvers for the
Poisson equation Du = f and the pseudo-differential equation (�D)1/2w = x (see [20,22]). Therefore, we dis-
cuss the generic structure of the FMM algorithm only briefly and refer the reader to the earlier papers for
further details. In Section 3, we discuss several important features of the current algorithm, including the
use of precomputed tables, and the use of lattice sums and the method of images to impose different bound-
ary conditions. In Section 4, we provide a brief error analysis, which supports our claims for accuracy, and
finally in Section 5, we present several numerical examples for different values of b and compare the effi-
ciency and accuracy of our solver to the FFT based uniform grid solvers.
2. Integral equation methods and the fast multipole method

In recent years, there has been a great deal of success in implementing highly accurate and efficient adap-
tive solvers for a wide range of linear partial differential equations based on the integral form of the solu-
tion. The integral approach is naturally adaptive, allows for higher order approximations easily, and can
handle arbitrarily complex boundaries. In the absence of fast algorithms, these approaches are not
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competitive. However, with modern techniques such as the particle mesh Ewald method (PME), the pre-
corrected FFT method (pFFT), and the fast multipole method (FMM) [16,23,27,44], the integral equation
approach is extremely efficient for large scale simulations and may become the method of choice in many
science and engineering applications.

2.1. Potential theory and the integral equation method

In this paper, we consider an integral equation approach for the modified Helmholtz equation in the unit
square D centered at the origin. For the sake of concreteness, we will consider, in some detail, the Dirichlet
boundary conditions on D given in Fig. 1.

Define~x ¼ ðx1; x2Þ and~y ¼ ðy1; y2Þ. The free-space Green�s function Gð~x�~yÞ ¼ Gðx1 � y1; x2 � y2Þ for the
operator D � b2 is given by the zeroth-order modified Bessel�s function of second kind,
Gðx1; x2Þ ¼ � 1

2p
K0 b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q� �
. ð2Þ
Therefore, a particular solution to the modified Helmholtz equation in (1) is simply
uð~xÞ ¼
Z Z

D
Gð~x�~yÞf ð~yÞ d~y.
This function, however, does not satisfy the desired Dirichlet boundary conditions. For this, a more elab-
orate solution procedure is required, based on the method of images [35,45].

Consider first the problem with homogeneous Dirichlet boundary conditions:
Du1ð~xÞ � b2u1ð~xÞ ¼ f ð~xÞ in D ¼ � 1
2
; 1
2

� �
� � 1

2
; 1
2

� �
;

u1 ¼ 0 on the boundary.

(
ð3Þ
The classical method of images can be applied in a straightforward manner and tiles the plane with the pat-
tern of images depicted in Fig. 2. Here, the shaded box is the computational domain D containing the
source distribution f. The odd reflection of f across the top boundary is denoted by �fT while the odd reflec-
tion of the function f across the right boundary is denoted by �fR. The reflection of �fR across the line
x2 ¼ þ 1

2
is denoted by fRT. It is straightforward to verify that the 2 · 2 super-cell defined by the solid lines

in Fig. 2 tiles the plane periodically and that the convolution of the free-space Green�s function with the
entire plane of sources in Fig. 2 solves (3).
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Fig. 1. Modified Helmholtz equation with Dirichlet boundary conditions.
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Fig. 2. A source distribution tiling the plane which solves the modified Helmholtz equation in the shaded box with homogeneous
Dirichlet boundary conditions.
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The second step of the algorithm solves the homogeneous modified Helmholtz equation with the pre-
scribed boundary conditions. That is, it solves:
Du2ð~xÞ � b2u2ð~xÞ ¼ 0 in D;

u2 ¼ gt on the top boundary;

u2 ¼ gb on the bottom boundary;

u2 ¼ gl on the left boundary;

u2 ¼ gr on the right boundary.

8>>>>>><>>>>>>:
ð4Þ
Once u1 and u2 are available, the solution to the original problem shown in Fig. 1 is given by u = u1 + u2.
To determine u2, we will rely heavily on the following classical result from potential theory [29,48].

Theorem 1. Let / satisfy the Yukawa equation D/ � b2/ = 0 in the half-space x2 > 0 with Dirichlet

boundary conditions /(x1,0) = f(x1). Then /(x1,x2) is given by the double layer potential
/ðx1; x2Þ ¼ 2

Z 1

�1

oG
ox2

ðx1 � n; x2Þf ðnÞ dn;
where
oG
ox2

ðx1 � n; x2Þ ¼
bx2

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � nÞ2 þ x22

q K1 b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � nÞ2 þ x22

q� �
;

with K1(Æ) being the first-order modified Bessel function of second kind.

This result, coupled with the method of images allows us to write the solution of Eq. (4) as the potential
due to a carefully laid out arrangement of double layer potentials with densities depicted in Fig. 3. Here,
Dl = 2gl, Dr = 2gr, Dt = 2gt, and Db = 2gb. �Dlr is the odd reflection of Dl across the top boundary, �Drr is
the odd reflection of Dr across the top boundary, �Dtr is the odd reflection of Dt across the right boundary,
and �Dbr is the odd reflection of Db across the right boundary. It is straightforward to verify that the field
induced by the set of all densities labeled Dl and �Dlr satisfies the Dirichlet boundary condition u = gl on
the left side and zero boundary conditions on the other three sides. Analogous results hold for the pairs
{Dr,�Drr}, {Dt,�Dtr}, and {Db,�Dbr}, and the principle of superposition implies that the net effect of
all densities is to satisfy the desired conditions in (4).
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Fig. 3. Double layers for inhomogeneous Dirichlet boundary conditions.
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In summary, by using an appropriate integral equation formulation, we can explicitly write the solution
as a collection of volume and layer potentials whose density functions extend throughout the plane and are
given explicitly by the method of images. One advantage of this formulation is that the error depends only
on the discretization error of the source distribution and the accuracy with which the various integrals
involved in the exact solution are carried out. Another advantage is that discontinuities and corner singu-
larities can be handled easily in this formulation, which is not the case for finite difference and finite element
based formulations.

2.2. Fast multipole acceleration

The fast multipole method (FMM) was first introduced by Greengard and Rokhlin as an efficient way to
evaluate the Coulomb potential due to a collection of charged particles [8,23,27]. As shown in [20,24], the
technique can be extended to volume potentials and allows for the evaluation of the field in O(N) time,
where N denotes the number of grid points in the discretization. Moreover, the work per grid point was
shown to be comparable to that for FFT-based solvers, despite the added flexibility of adaptive mesh
refinement.

The basic structure of the fast multipole method follows and we refer the reader to [8,23,27] for a more
detailed discussion. Here, we focus on the fast multipole method for the free-space problem whose solution
is given by the volume integral
uð~xÞ ¼
Z Z

D
Gð~x�~yÞf ð~yÞ d~y. ð5Þ
We assume that the source distribution f is supported inside the unit square D, centered at the origin. On
this square, we superimpose a hierarchy of refinements (a quad-tree). Grid level 0 is defined to be D itself,
and grid level l + 1 is obtained recursively by subdividing each square at level l into four equal parts. Using
standard terminology, if s is a fixed square at level l, the four squares at level l + 1 obtained by its sub-
division will be referred to as its children. Allowing for adaptivity is simple since one does not need to
use the same number of levels of subdivision in all regions of D. However, we do assume that the quad-tree
satisfies one fairly standard restriction. We require that two leaf nodes which share a boundary point must
be no more than one refinement level apart (see [2,20,36]).

Denoting the childless leaf nodes in the quad-tree structure by Di for i = 1, . . . ,M where M is the total
number of such node cells, we assume that we are given f on a cell-centered 4 · 4 grid for each Di. Then
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N = 16 · M is the total number of grid points in D. To obtain fourth-order accuracy, these 16 data points
are used to construct a fourth-order polynomial approximation to f of the form
fDiðy1; y2Þ �
X10
j¼1

cDiðjÞbjðy1 � y1Di ; y2 � y2Di Þ; ð6Þ
where ðy1Di ; y2Di Þ denotes the center of Di and the basis functions {bj(y1,y2)|j = 1, . . . ,10} are given by
fyj11 y

j2
2 jj1; j2 P 0; j1 þ j2 6 3g. Therefore, the solution in (5) can be approximated by
uð~xÞ �
XM
i¼1

Z Z
Di

Gðx1 � y1; x2 � y2Þ
X10
j¼1

cDiðjÞbjðy1 � y1Di ; y2 � y2Di Þ dy1 dy2. ð7Þ
Further, to evaluate this potential at the N grid points, the O(N2) work required using direct summation can
be reduced to O(N) using the fast multipole method. The basic notion underlying the FMM is that for each
grid point, contributions from ‘‘nearby’’ cells (neighbors) to the potential field can be handled directly,
while ‘‘far-field’’ (non-neighbor) interactions are handled using multipole and related types of expansions.

Definition 1. Consider a square B in the adaptive quad-tree structure shown in Fig. 4 (see also [20]):

� The colleagues (labeled ‘‘c’’) of a square B are squares at the same refinement level which share a bound-
ary point with B. B is considered to be a colleague of itself.

� When B is a leaf node:
1. The coarse neighbors (labeled ‘‘n+’’) of B are leaf nodes at the level of B�s parent which share a bound-

ary point with B.
2. The fine neighbors (labeled ‘‘n�’’) of B are leaf nodes one level finer than B which share a boundary

point with B.
3. The s-list (labeled ‘‘s’’) of B consists of those children of B�s colleagues which are not fine neighbors of

B.
� Together, the union of the colleagues, coarse neighbors, fine neighbors, and s-list members of a node B
will be referred to as B�s neighbors.
B
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Fig. 4. Neighbors and interaction list of a box B in an adaptive tree structure.
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The first step in the fast multipole method is to form the multipole expansions for all the nodes in the
quad-tree structure. This is done through the use of Graf�s addition theorem [1].

Theorem 2. (Graf�s addition theorem) Assume the polar coordinates for points ~x ¼ ðx1; x2Þ and ~y ¼ ðy1; y2Þ
are given by ðj~xj; h~xÞ and ðj~yj; h~yÞ, respectively, with j~xj > j~yj, then
K0ðbj~x�~yjÞ ¼
X1
l¼�1

Klðbj~xjÞIlðbj~yjÞeilðh~y�h~xÞ.
By applying Theorem 2, the ‘‘far-field’’ multipole expansion for a leaf node is then given by (see also
[23,25,27]).

Theorem 3. Let s be a node in the quad-tree centered at S = (s1,s2). Assume s is not a neighbor of B, then, the

potential Uð~xÞ due to s for~x 2 B is given by the multipole expansion
Uð~xÞ ¼
Z Z

s

�1

2p
K0ðbj~x�~yjÞ

X10
j¼1

csðjÞ bjðy1 � s1; y2 � s2Þ dy1 dy2 ¼
Xl¼1

l¼�1
MlKlðbj~x� SjÞe�ilh~x ; ð8Þ
where the multipole coefficients are given by
Ml ¼
�1

2p

X10
j¼1

csðjÞ
Z Z

s
I lðbj~y � SjÞeilh~y bjðy1 � s1; y2 � s2Þ dy1 dy2. ð9Þ
Here, Il and Kl are the lth order modified Bessel�s function of the first and second kind respectively, and
h~x and h~y denote the angular polar coordinates for~x and ~y with respect to the expansion center S.

The multipole expansion of a parent node is derived by merging the shifted multipole expansions of its
four children. The ‘‘multipole to multipole’’ translation operator which shifts the center of the expansion is
also a direct result of Graf�s addition theorem:

Theorem 4. Suppose the multipole expansion centered at S is given by
Uð~xÞ ¼
X1
l¼�1

alKlðbqÞeilh;
where (q,h) denote the polar coordinates of the evaluation point~x with respect to S. Then the corresponding

multipole expansion centered at Snew = (q0,h0) is given by
Uð~xÞ ¼
X1
l¼�1

blKlðbqnewÞeilhnew ;
where qnew and hnew are the new polar coordinates of~x with respect to Snew, and the new multipole coefficients

are expressed using the translation operator TMM defined by
bl ¼
X1

m¼�1
amIl�mðbq0Þe�iðl�mÞh0 . ð10Þ
In the second step of the fast multipole method, it is observed that for each node B, the contribution from
far-field nodes is locally ‘‘smooth’’. Hence we can associate to each box a local expansion which collects
information from the far-field multipole expansions. The local expansion is given by
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Uð~xÞ ¼
X1
l¼�1

LlIlðbqÞeilh; ð11Þ
where (q,h) denote the polar coordinates of~x with respect to the center of B.
For each node B, its local expansion consists of two different contributions, one from distant boxes

which make up the interaction list described in Definition 2, and the other inherited from its parent which
contains the far-field contributions outside the interaction list.

Definition 2. In the adaptive quad-tree structure shown in Fig. 4, the interaction list (labeled ‘‘i’’) for a
square B consists of those children boxes from the colleagues of B�s parent, excluding B�s colleagues; and
those childless colleagues of B�s parent, excluding B�s coarse neighbors [20,23,27].

In the original FMM, to translate multipole expansions from nodes in the interaction list to local ones,
we apply the following result:

Theorem 5. Suppose a multipole expansion associated with node s centered at S is given by
Uð~xÞ ¼
X1
n¼�1

MnKnðbj~x� SjÞe�inh~x . ð12Þ
Further assume s is in the interaction list of node B. Then for any~x 2 B, Uð~xÞ can be represented as a local

expansion
Uð~xÞ ¼
X1
l¼�1

LlIlðbqÞeilh;
where (q,h) denote the polar coordinates of~x with respect to the center of B, and the local coefficients are ex-

pressed using the ‘‘multipole to local’’ translation operator TML defined by
Ll ¼
X1
n¼�1

MnKl�nðbq0Þe�iðl�nÞh0 . ð13Þ
Here (q0,h0) are the polar coordinates of B�s center with respect to S.

The process described in Theorem 5 requires approximately 27p2 work per node, where p denotes the
length of the truncated multipole expansions and 27 is the maximal possible members in the interaction list.
This is the dominating part of the operation count in the FMM. It will be shown in Appendix C that intro-
ducing the plane wave representations and ‘‘diagonal translation operator’’, the work amount for TML can
be reduced to approximately 3p2. Now, in order for the box to inherit its parent�s local expansion, we apply
the following theorem:

Theorem 6. For the parent�s local expansion centered at S given by
U ¼
X1
k¼�1

akIkðbqÞeikh;
the corresponding local expansion for the child centered at (q0,h0) is given by
U ¼
X1

m¼�1
bmImðbqnewÞeimhnew ;
where the new coefficients are computed using the ‘‘local to local’’ translation operator TLL defined by
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bm ¼
X1
k¼�1

akIm�kðbq0Þe�iðm�kÞh0 . ð14Þ
Finally, in the last step of the fast multipole method, if~x is a grid point in a leaf node B, we evaluate the
local expansion which contains all the contribution from the ‘‘far-field’’, and calculate the ‘‘nearby’’ local
interactions
X10
j¼1

cDiðjÞ
Z Z

Di

Gðx1 � y1; x2 � y2Þbjðy1 � y1Di ; y2 � y2Di Þ dy1 dy2
� �

ð15Þ
directly by mapping the coefficients cDiðjÞ of those childless leaf nodes found in (6) to the function value at~x
using precomputed tables, and by evaluating the multipole expansions for those s-list members with chil-
dren. The readers are referred to Section 3.2 for further discussions.
2.3. The pseudocode

We summarize the description of the fast multipole method given in Section 2.2 using the following
pseudocode:

Initialization

Comment [p denotes the order of the multipole expansion determined by the desired accuracy �FMM. lmax

denotes the maximum refinement level in the quad-tree structure determined by the prescribed precision
�rhs.]

Generate the ‘‘level-restricted’’ adaptive quad-tree and the precomputed table of coefficients.
Step I: Far-field Interaction – Upward Pass

Comment [In upward pass, multipole expansions for all nodes in the tree structure will be formed.]

for l = lmax, . . . ,0

for all boxes j on level l

if j is a leaf node

form the multipole expansion Ul,j using Eq. (8).

else

form the multipole expansion Ul,j by merging the expansions of its children using the operator
TMM from Eq. (10).

endif

end

end

Cost [The upward pass requires approximately Mp2 work, where M is the number of leaf nodes.]
Step II: Far-field Interaction – Downward Pass

Comment [In downward pass, local expansion will be formed for each box to collect far-field
contributions.]

initialize the local expansion W0,0 = 0.

for l = 1, . . . ,lmax
for all boxes j on level l
Compute eWl;j by shifting its parent�s W expansion using the operator TLL from Eq. (14).
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Compute Wl,j by adding in the contributions from all boxes in j�s interaction list using TML from
Eq. (13). (alternatively, see Eqs. (27)–(29) in Appendix C.)

end

end

Cost [The downward pass requires approximately 28Mp2 work using Eq. (13), or 3Mp2 work using Eqs.
(27)–(29).]

Step III: Local interactions

Comment [At this point, for each leaf node Di, its local expansion contains the influence of the source
distribution f over all leaf nodes Dj outside the neighbors of Di.]

for i = 1, . . . ,M

for each target point~x in Di,

evaluate Di�s local expansion at~x,
evaluate the influence of each neighbor using the precomputed table of coefficients. (see Section
3.2)

end

end

Cost [The maximum number of neighbors a box can have is thirty-three (twelve fine neighbors, twenty s-
list members, and itself). Thus, the local work is approximately 33 Æ N operations.]
3. Algorithm details

Compared with the Poisson equation solver in [20], one important difference in the present case is that
the modified Helmholtz equation depends on an extra parameter b. Thus, many of the building blocks of
the FMM for the Poisson context have to be changed accordingly. In this section, we discuss these imple-
mentation details.
3.1. Scaling

Consider the multipole and local expansions given in Eqs. (8) and (11). For small z, IlðzÞ �
ð1
2
zÞl=Cðlþ 1Þ and KlðzÞ � 1

2
CðlÞð1

2
zÞ�l. Thus, one can easily encounter underflow and overflow in numer-

ical calculations. To avoid loss of accuracy, the Bessel functions, as well as the coefficients, have to be
scaled appropriately. For this, we introduce the scaled multipole and local coefficients eMl and eLl defined
by:
eMl ¼ Ml � Cðjlj þ 1Þ 1

2
bh

� ��jlj
" #

;

eLl ¼ Ll Cðjlj þ 1Þ 1

2
bh

� ��jlj
" #,

.

We define the scaled Bessel functions by:
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eKl ¼ Kl Cðjlj þ 1Þ 1

2
bh

� ��jlj
" #,

;

eI l ¼ Il � Cðjlj þ 1Þ 1

2
bh

� ��jlj
" #

.

Clearly
P

MlKl ¼
P eMl

eKl and
P

LlIl ¼
PeLl

eI l. In practice, instead of (9), we compute the scaled mul-
tipole moments from the formula
eMl ¼
X10
j¼1

csðjÞ �
h
2

� �JðjÞ

� W ðl; jÞ; ð16Þ
where
W ðl; jÞ ¼ �1

2p

Z 1

�1

Z 1

�1

eI l bh
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ y22

q� �
e�ilhyj11 y

j2
2 dy1 dy2. ð17Þ
The weights W(l,j) in (17) used in computing the multipole coefficients are functions of bh only. Thus, we
can precompute and tabulate these weights at selected values of the variable bh and recover them for arbi-
trary values using high-order interpolation. Details of this step are discussed in the following section.

3.2. Local interactions and the precomputed coefficients

The efficiency of our algorithm is improved dramatically by precomputing the linear mappings used in
the evaluation of the local interactions in (15). For a given node B, the local contributions include those
from its colleagues, its fine neighbors (which will be referred to as ‘‘small to big’’ interactions), its coarse
neighbors (‘‘big to small’’), and its s-list members (‘‘small to big far’’).

As an example, consider the ‘‘small to big’’ local interactions, and let us index the 16 uniform grid points
in the large center cell of Fig. 5 by pm for m = 1, . . . ,16. Further, let the 12 small boxes in the figure be in-
dexed by sn for n = 1, . . . ,12. For simplicity, we assume the coordinate system is translated so that box s1 is
centered at the origin with side length h. Then upon approximating the source function f in s1 by a 4th
degree polynomial as in (6), the potential due to s1 at the point pm = (x1(m),x2(m)) is given by
1 2 3 4

5 6

7 8

9 10 11 12

-h/2 h/2

Fig. 5. Potential at 16 uniform grid points in large cell due to sources in 12 small boxes.
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Uðx1; x2Þ ¼
Z h

2

�h
2

Z h
2

�h
2

X10
j¼1

csðjÞGðx1ðmÞ � y1; x2ðmÞ � y2Þbjðy1; y2Þ dy1 dy2

¼
X10
j¼1

csðjÞhj1þj2þ2 � W ðs1; pm; jÞ. ð18Þ
After introducing the scaled variables ~xi ¼ xi
h and ~yi ¼

yi
h for i = 1 and 2,
W ðs1; pm; jÞ ¼
Z 1

2

�1
2

Z 1
2

�1
2

�1

2p
K0 bh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~x1ðmÞ � ~y1Þ

2 þ ð ~x2ðmÞ � ~y2Þ
2

q� �
� ~y1j1 � ~y2j2 d ~y1 d ~y2.
Notice thatW(s1,pm,j) is a function of bh only. Thus, it can be approximated by a Chebyshev expansion over
a large range of bh. For instance, to obtain a relative approximation error less than 10�13, numerical exper-
iments indicate that for s1, p1 and j = 1, 21-point Chebyshev on a total of 9 intervals
{Ii = [ai,ai+1],i = 0, . . . ,8} is sufficient. For this, the interval endpoints ai are given by {0, 1, 3, 8, 20, 50,
110, 175, 290, 1015}. Thus, 9 · 21 values need to be precomputed for the function W(s1,p1,1). Similar results
apply for each source box and each target point. In our code, for a given b, the linear mapping from the coef-
ficients cs(j) to the values U(x1(m),x2(m)) is precomputed for all levels in the initialization step by evaluating
the Chebyshev approximations ofW(sn,pm,j). The ‘‘small to big’’ interactions are then calculated using (18).

As for storage, there are at most 12 source boxes sn, 16 target points pm, and 10 basis functions c(j). With
9 intervals and 21 Chebyshev nodes per interval for each function, the size of the table is approximately
12 · 16 · 10 · 9 · 21 which consumes approximately 400 kb of memory. It is possible to further reduce
the size of the table by symmetry considerations with the consequence of a slightly more complicated code
and a negligible sacrifice of speed. We omit the details and refer the interested readers to [20].

As indicated earlier, precomputed tables are used in other steps of our algorithm as well. In (6), the
approximating polynomials are computed by mapping the source function values at the 16 grid points in
a cell to 10 coefficients, where the linear mapping matrix is derived using a precomputed table based on
a least squares fit. In (17), the coefficients are also precomputed and stored as Chebyshev polynomial
coefficients.

3.3. Boundary conditions and the lattice sums

As noted in Section 2.1, problems with Dirichlet boundary conditions for the unit square can be solved
using double layer and volume potentials based on the method of images. Using classical results similar to
Theorem 1, this technique can be generalized to problems with Neumann or mixed boundary conditions.
That is, the solution can be represented as a combination of volume, single, and/or double layer potentials
for rectangular structures where the density functions are explicitly given by the right hand side of the gov-
erning equation and the boundary conditions as well as their images. Again, these images tile the plane peri-
odically. In this section, we leave the derivation of the periodic ‘‘super-cell’’ structure for other boundary
conditions to [20] or classical textbooks on potential theory and consider only the periodic cells shown in
Figs. 2 and 3. We impose periodic boundary conditions on these structures using what are known as lattice
sums. For simplicity of notation, we assume the fundamental unit super-cell (outlined with solid lines) in
these figures is centered at the origin.

Since the plane is tiled by identical copies of the super-cell, they all have the same multipole coefficients,
i.e., an image cell denoted by Sk1;k2 has a multipole expansion of the form
Uð~xÞ ¼
Xp

n¼�p

MnKnðbj~x�~ck1;k2 jÞe
�inh~x�~ck1 ;k2 ;
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where h~x�~ck1 ;k2 is the angle of~x with respect to the cell center denoted by~ck1;k2 . We are only interested in the
field within the cell centered at the origin. Thus, the contributions from all distant image cells can be col-
lected as a single local expansion using the multipole to local translation operator TML in (13). Define K to
be the set of all integer lattice points (k1,k2) in the plane, except the origin and its eight nearest neighbors,
and denote the polar coordinates of ~ck1;k2 with respect to the origin by (qS,hS). The local coefficients are
given by
Ll ¼
Xp

n¼�p

Mn

X
ðk1;k2Þ2K

Kl�nðbqSÞe�iðl�nÞhS ;
where S ¼ Sk1;k2 is the far-field cell. Further, introduce the concept of lattice sums defined as
SnðbÞ ¼
X
S2K

KnðbqSÞeinhS ; n ¼ 0; . . . ;1; ð19Þ
the linear mapping from the multipole to local coefficients then becomes
Ll ¼
Xp

n¼�p

Sl�nMn. ð20Þ
Once the local expansion for the fundamental super-cell has been created, what remains can be embed-
ded in a fast multipole code, which is only slightly more involved than the one described above for free-
space problems. The details are technical and involve essentially bookkeeping considerations.

In order for the method to be efficient, however, it is convenient to have a fast algorithm to evaluate the
lattice sums themselves. There are a number of such schemes. Ewald-like methods work by splitting the sum
into two pieces [4,21,43,47], where the first piece decays rapidly in the ‘‘physical domain’’, while the second
part converges rapidly in the Fourier domain. Other recent approaches include Berman and Greengard�s
renormalization method [3], Helsing and Lambert�s direct method using fast multipole acceleration
[30,38], and Chin, Nicorovici and McPhedran�s method using absolutely converging series [13]. In
[18,34], new integral formulas were developed for Coulombic and Helmholtz lattice sums based on expo-
nential (‘‘plane wave’’) expansions similar to those in Theorem 9 of Appendix A. The lattice sums become
one-dimensional integrals in the two-dimensional case and are easily computed using Gaussian quadrature
[18,34].
4. Error analysis

As indicated earlier, an important feature of a direct integral-transform based solution procedure is
that error analysis takes a particularly simple form. Unlike finite difference and finite element methods,
there is no need for convergence estimates based on smoothness properties of the (unknown) solution.
There are precisely three sources of error: the discretization/approximation of the data (the source
distributions and boundary conditions); the truncation of the infinite series (multipole, local, and expo-
nential expansions); and the calculation of local interactions. The following error control strategies are
applied:

1. The discretization error is handled by adaptive refinement of the data. The quad-tree structure is gener-
ated so that the relative discretization error is less than the desired tolerance �rhs.

2. For extremely large b in a unit box (or bh in scaled boxes), contributions from far-field boxes are expo-
nentially small and easily neglected.
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3. The number of terms in the truncated expansions is determined by the prescribed accuracy �FMM. Under
fairly reasonable assumptions, the truncated multipole and local expansions with 21 terms guarantee sin-
gle precision, while 42 terms give double precision.

4. The relative accuracy in direct local interactions is set to 13 digits using the precomputed tables discussed
in Section 3.2.

Of these strategies, control of the discretization and local interaction errors (items (1) and (4) above) are
easily understood. The error due to truncation of the infinite series is very complicated and we refer the
readers to [17,19] for more detailed discussion. It is, perhaps, not so surprising that the number of terms
in the expansion for screened Coulomb interactions is (at most) the number of terms needed for the
unscreened case. The number of terms cited above (21 for single precision and 42 for double precision)
are essentially the same as for the Poisson equation.
5. Numerical examples

The fast modified Helmholtz solver has been implemented in Fortran77. The following numerical exam-
ples are performed on a 450 MHZ SUN Ultra-80 with 1024 Mb memory.

As a first test, we consider the free-space problem
Dwð~xÞ � 0.01wð~xÞ ¼ f ð~xÞ; ð21Þ
whose exact solution is given by
wð~xÞ ¼
X3

i¼1

e�aj~x�~xi j2 ; ð22Þ
where a = 50,~x1 ¼ ð0.1; 0.1Þ,~x2 ¼ ð0; 0Þ, and~x3 ¼ ð�0.15; 0.1Þ. As the source distribution f ð~xÞ decays rap-
idly for large~x, we may therefore assume f ð~xÞ is compactly supported in the unit square D so that the solu-
tion is given by

R R
DGð~x�~yÞf ð~yÞ ds~y . The adaptive mesh structure based on AMR [2,36] is shown in Fig. 6,

which resolves f ð~xÞ to 3 digits. (Three levels of refinement are present.) The exact solution is shown in Fig. 7.
To test efficiency, we first compare our solver with existing FFT-based algorithms. Since our solver is

adaptive and because traditional FFT-based solvers only allow for uniform grids and simple geometry,
we compare the speed by measuring how many grid points each solver can process in one second. In Table
1, we list the averaged results for the FFT based second-order HWSCRT [49,50] which, compared with
other FFT-based solvers (the fourth-order Mehrstellen methods and the sixth-order FFT9 [15,32]), is read-
ily available and allows for different boundary conditions. In the table, N denotes the number of grid
points, E1 denotes the ‘‘relative’’ L1 error of the computed solution ðkwnum�wanalk1

kwanalk1
Þ where wnum is the numer-

ical approximation to the exact solution wanal in (22), Thwscrt denotes the required solution time in seconds,
and Rate denotes the number of grid points ‘‘processed’’ per second (N/Thwscrt).

The timing results for the new fourth-order solver are given in Table 2. Here, �FMM denotes the requested
precision from far-field interactions within the fast multipole method, which determines the number of
terms in different truncated expansions, �rhs denotes the requested precision in discretizing f ð~xÞ, Nlev de-
notes the number of levels used in the FMM hierarchy, E1 denotes the relative L1 error, Nfree denotes
the number of grid points used, Tfmm denotes the required solution time in seconds, and Rate denotes
the number of grid points ‘‘processed’’ per second. In all cases, the prescribed accuracy is obtained by
our new solver. Compared with Table 1, the FMM-based solver is approximately 3–6 times slower than
the FFT based HWSCRT. We want to mention that we have not carried out low-level optimization of
the current code, which we expect would reduce the cost by a significant factor.



Fig. 6. The adaptive grid structure for test problem 1.

Fig. 7. The exact solution of test problem 1.
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In example 2, we consider the same equation as in test problem (21), but with periodic boundary con-
ditions. In Table 3, we can conclude that the additional time required for treatment of the boundary con-
ditions is less than 20% extra of that of the free-space solver. The reader may note that the number of grid



Table 1
Timing results for HWSCRT

N E1 Thwscrt Rate

128 · 128 = 16,384 4.8 · 10�4 0.19 3.4 · 105

256 · 256 = 65,536 1.1 · 10�4 0.19 3.4 · 105

512 · 512 = 262,144 3.0 · 10�5 0.85 3.1 · 105

1024 · 1024 = 1,048,576 7.4 · 10�6 4.5 2.3 · 105

2048 · 2048 = 4,194,304 1.9 · 10�6 19.9 2.1 · 105

Table 2
Timing results for fourth-order FMM accelerated Yukawa solver

�FMM �rhs Nlev E1 Nfree Tfmm Rate

10�3 10�3 5 7.0 · 10�4 8128 0.09 9.0 · 104

10�3 10�6 7 7.8 · 10�5 51,952 0.45 1.2 · 105

10�6 10�6 7 1.6 · 10�7 51,952 0.74 7.0 · 104

10�6 10�9 8 5.5 · 10�8 714,688 9.00 8.0 · 104

10�9 10�9 8 9.0 · 10�10 714,688 12.41 5.8 · 104

Table 3
Timing comparison for free-space and periodic boundary conditions

�FMM �rhs Nfree Nperiodic Tfree Tperiodic Ratefree Rateperiodic

10�3 10�3 8812 8812 0.09 0.09 9.0 · 104 9.0 · 104

10�3 10�6 51,952 52,096 0.45 0.51 1.2 · 105 1.0 · 105

10�6 10�6 51,952 52,096 0.74 0.79 7.0 · 104 6.6 · 104

10�6 10�9 714,688 716,176 9.00 9.10 8.0 · 104 7.9 · 104

10�9 10�9 714,688 716,176 12.41 12.58 5.8 · 104 5.7 · 104
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points in the periodic case denoted by Nperiodic is slightly increased compared with Nfree. This is due to the
requirement we impose on the quad-tree that no two neighboring boxes can be more than one refinement
level apart.

The fact that our solver guarantees the number of digits of accuracy so long as the source distribution
and boundary conditions are discretized to the same precision is extremely useful when considering discon-
tinuous boundary conditions or source distributions.

To further test the accuracy of the algorithm, in example 3, we consider the same equation as in test
problem (21), but specify the Dirichlet boundary conditions using the exact solution. The error distribution
is shown in Fig. 8. Note that we obtained the prescribed accuracy. Note also that the error is not smooth –
due in part to the truncation of the various expansions used in the algorithm.

As the last example, we consider the equation
uðx1; x2Þ � �Duðx1; x2Þ ¼ f ðx1; x2Þ
with � = 10�5. We use the same exact solution (22) and the exact Dirichlet boundary conditions. We set the
required accuracy to 6 digits. The numerical result is shown in Fig. 9. Although the error is highly oscilla-
tory, the prescribed accuracy is met. We have tested numerous problems with � as small as 10�20 and the
prescribed accuracy is always obtained.



Fig. 8. Error distribution for the Dirichlet boundary conditions.

Fig. 9. Error distribution for small �.
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6. Conclusion

In this paper, we have developed a new fast direct solver for the modified Helmholtz equation on the unit
box. The solver is based on an integral equation formulation, accelerated by the new version of fast mul-
tipole method, and handles different kinds of boundary conditions. The solver allows for adaptive mesh
refinement where the amount of work scales linearly with the total number of grid points, and its efficiency
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is very competitive with FFT based methods. The code has been tested for a large variety of boundary con-
ditions and, in all cases, achieved the prescribed accuracy.

Currently, the code is being optimized for performance and implemented on a variety of parallel archi-
tectures. Generalization of the solver to three dimensions is being considered. Except for several technical
details including the optimal quadrature nodes for plane wave expansions and the more complicated adap-
tive tree structure, such generalization is straightforward. Complex geometry is also being considered
through the coupling of the volume integral scheme described here with a boundary integral representation
using an unknown surface ‘‘charge’’ density. The techniques in this solver can be applied to other equa-
tions, including the low frequency Helmholtz equation which is widely used in computational electromag-
netics. Results along these directions will be reported at a later date.
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Appendix A. Plane wave expansions

For the two-dimensional Green�s function of the modified Helmholtz equation (zeroth-order term in the
multipole expansion), the following plane wave expansion formula is well known ([42], p. 823).

Theorem 7. For a source point s = (x,y), with x > 0, whose polar coordinates are given by (r,h),
K0ðbrÞ ¼
1

2

Z 1

0

e�
ffiffiffiffiffiffiffiffiffi
k2þb2

p
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ b2
q ½eiky þ e�iky 	 dk. ð23Þ
For higher order terms, the following theorem ([31], p. 127) is applied.

Theorem 8. Suppose fn(x1,x2, . . . ,xp) is a rational algebraic homogeneous function of degree n, and F(r2) is

any function of r2 ¼ x21 þ x22 þ � � � þ x2p, then
fn
o

ox1
;
o

ox2
; . . . ;

o

oxp

� �
F ðr2Þ ¼ 2n

dnF
dðr2Þn þ

2n�2

1!

dn�1F

dðr2Þn�1
Dþ � � � þ 2n�2k

k!
dn�kF

dðr2Þn�k D
n�k þ � � �

( )
� fnðx1; x2; . . . ; xpÞ. ð24Þ
Plane wave expansions for different directions can be derived.

Theorem 9. For a point (x,y), with x > 0, whose polar coordinates are given by (r,h),
KnðbrÞeinh ¼
1

2

Z 1

0

e�x
ffiffiffiffiffiffiffiffiffi
k2þb2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ b2

q eiky

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ b2

q
þ k

b

0@ 1An

þ e�iky

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ b2

q
� k

b

0@ 1An264
375 dk.
For x < 0,
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KnðbrÞeinh ¼
ð�1Þn

2

Z 1

0

ex
ffiffiffiffiffiffiffiffiffi
k2þb2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ b2

q eiky

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ b2

q
� k

b

0@ 1An

þ e�iky

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ b2

q
þ k

b

0@ 1An264
375 dk.
For y > 0,
KnðbrÞeinh ¼
in

2

Z 1

0

e�y
ffiffiffiffiffiffiffiffiffi
k2þb2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ b2

q eikx
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k2 þ b2

q
� k

b

0@ 1An

þ e�ikx
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q
þ k

b

0@ 1An264
375 dk.
For y < 0,
KnðbrÞeinh ¼
ð�iÞn

2

Z 1

0

ey
ffiffiffiffiffiffiffiffiffi
k2þb2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q eikx
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0@ 1An264
375 dk.
Appendix B. Generalized gaussian quadrature

The new version of fast multipole method translates the multipole expansions to exponential ones using
the plane wave expansions as discussed in Appendix A. In the numerical implementation, a very natural
question arises: What are the optimal weights and nodes for approximating Kn(br)e

inh? In this section,
we discuss the term n = 0, and ask how to approximate (23) using
K0ðbrÞ �
XN
k¼1

wke
�

ffiffiffiffiffiffiffiffiffi
k2kþb2

p
xðeikky þ e�ikkyÞ. ð25Þ
Note that the approximation must hold for all points (x,y) in the interaction list, and that the optimal
nodes are unknown. For this non-linear optimization problem, Cheng et al. [12] constructed a generalized
Gaussian quadrature scheme. In traditional Gaussian quadrature techniques, the nodes and weights of the
quadratures satisfy systems of non-linear equations where polynomials are used as basis test functions. The
generalized Gaussian quadrature is based on the observation that for the integral in (23), polynomial test
functions can be replaced by a system of functions derived using singular value decomposition. This results
in a similar system of non-linear equations which can be solved to obtain the optimal nodes. The weights
are then derived using least squares fit.

This technique has been successfully applied to a fairly broad classes of functions, including the diagonal
translation operators for Laplace�s equation. In our algorithm, we applied this technique to generate the opti-
mal quadratures for the plane wave expansion in (25). Numerical results show that for a six digit accuracy
requirement, atmost sixteen node points are required forbof all range.Asb gets larger, less terms are required.
Appendix C. Diagonal translation operator

The new version of the FMM [11,20,22,26,28,33,51] are based on exponential expansions discussed in
Appendix A. It diagonalizes the multipole to local translation operator TML in (13), and reduces the con-
stant prefactor implied by the O(N) notation substantially, especially in three dimensions. Here, we extend
this new technology to the modified Helmholtz equation in two dimensions, reducing the number of oper-
ations in applying multipole-to-local translation from 27p2 to p2 + 27p + p2.
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First, suppose a node s centered at S = (s1,s2) is in the interaction list of a given box B and it is associated
with the truncated multipole expansion
U ¼
Xp

l¼�p

MlKlðbqÞeilh; ð26Þ
which is to be transmitted to the local expansion of B. Assume B lies to the right (x increasing), using for-
mulas in Theorem 9 of Appendix A and the generalized Gaussian quadratures in Appendix B, the field can
equally well be described, although approximately, by the Q-term plane wave (exponential) expansion
U �
XQ
q¼1

M1
qe

�
ffiffiffiffiffiffiffiffiffi
k2qþb2

p
ðx�s1Þeikqðy�s2Þ þM2

qe
�

ffiffiffiffiffiffiffiffiffi
k2qþb2

p
ðx�s1Þe�ikqðy�s2Þ

h i
. ð27Þ
The advantage of this plane wave representation is that the operator which shifts the expansion center to
a new location S0 ¼ ðs01; s02Þ is carried out using O(Q) multiplications rather than O(p2). More precisely, the
translated expansion is simply
U �
XQ
q¼1

N 1
qe

�
ffiffiffiffiffiffiffiffiffi
k2qþb2

p
ðx�s0

1
Þeikqðy�s0

2
Þ þ N 2

qe
�

ffiffiffiffiffiffiffiffiffi
k2qþb2

p
ðx�s0

1
Þe�ikqðy�s0

2
Þ

h i
; ð28Þ
where:
N 1
q ¼ M1

q � e�
ffiffiffiffiffiffiffiffiffi
k2qþb2

p
ðs0

1
�s1Þeikqðs

0
2
�s2Þ;

N 2
q ¼ M2

q � e�
ffiffiffiffiffiffiffiffiffi
k2qþb2

p
ðs0

1
�s1Þe�ikqðs02�s2Þ.
As the coefficients {Mq} are mapped to {Nq} using only Q operations and the linear mapping matrix is
diagonal, this operator is called a diagonal translation operator. It remains only to control the number
of terms in the exponential representation, denoted by Q above. This is discussed briefly in Appendix B,
and it turns out that Q is, in fact, slightly smaller than p.

The shifted exponential expansion is then converted to a classical local expansion. This can be done
using the following formula (see [1], p. 376):
ez cos h ¼ I0ðzÞ þ 2
X1
k¼1

IkðzÞ cosðkhÞ. ð29Þ
We refer the reader to [20] for a more thorough discussion of plane wave based schemes in the context of
the Poisson equation.
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